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Laboratoire d’Optóelectronique et de Micróelectronique, Université de Metz, Institut de
Physique-Electronique et Chimie, 1 Boulevard Arago, 57078 Metz Cédex 3, France

Received 7 March 1996

Abstract. We study the influence of a low external uniform magnetic field on the energy
levels of three-particle Coulomb states in a strictly two-dimensional medium. We show that
at low magnetic fields, when the coupling between the relative motion and the motion of the
centre of mass may be neglected, additional Landau levels appear. We compute the ground
state energy corresponding to the relative motion as a function of the strength of the magnetic
field for different values of the mass ratio of the negatively and positively charged particles. We
compare our results with those we obtained previously in the three-dimensional limit.

1. Introduction

Charged excitons (or excitonic trions) are three-particle excitonic complexes that can result
[1] from the binding of an exciton (electron-hole pair) with an electron or a hole in
semiconductors (SCs). Two kinds of excitonic trion may be considered: the negative
trion X− (eeh) resulting from the Coulombic interaction between an exciton and an electron
and the positive trion X+2 (ehh) involving an exciton and a hole. Due to their mobility and
charge, they exhibit original properties which may be used to distinguish them from other
excitonic complexes.

They have been identified [2–5] in different bulk SCs. However, due to their relative
small binding energies, they may be observed only at very low temperature. This situation
limits to some extent their practical importance in these materials.

However more favourable conditions of their observation are expected in quasi-two-
dimensional (2D) SCs [6, 7] (SC superlattices and quantum wells, surfaces, interfaces).
Indeed, the quantum confinement leads to an increase of the binding energy of the excitonic
complexes, up to a factor of ten [8], compared to the massive SC, so that they remain stable
up to room temperature. Moreover, at low optical excitations, the necessary presence of
free charge carriers (electron or holes) involved in transitions to or from excitonic trions
states may be realized, for instance, by a previous modulated doping. In fact, the negatively
charged exciton X− has been recently identified [9] in the magneto-absorption spectra of
CdTe/Cd1−xZnxTe multiple quantum wells.

Very original properties are expected under the influence of a magnetic field. Indeed, in
our previous theoretical studies [10, 11] of the action of a magnetic field on excitonic trions
in 3D semiconductors, we have shown that the magnetic field gives rise to an increasing of
the binding energies as well as to an additional quantization of the energies. Further, the
Landau levels associated with the centre of the mass charge lead to an oscillatory magneto-
absorption. An enhancement of all these effects is expected in the case of confined SCs.
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In this paper, we report the first theoretical study of the influence of a low magnetic
field on the binding energies of excitonic trions in the strictly 2D limit, with a magnetic
field perpendicular to the plane. The results of the present work, together with those of our
previous 3D calculations [11], are expected to give an estimation of what happens in the
case of SC quantum wells.

In the next section, we first study the invariants of the problem and then deduce the
specific properties of the Hamiltonian. We show how the centre of mass and relative motions
can be separated at low magnetic fields in the adiabatic approximation. In section 3,
we present our method for the variational resolution of the Schrödinger equation in the
isotropic effective mass model [12]. In section 4, we present the results of our numerical
calculations. As expected, the binding energies increase with the intensity of the magnetic
field. Moreover, each energy level splits into Landau levels.

2. Theory

Neglecting the spin interactions and choosing a symmetrical Coulomb gauge, the 2D
effective mass Hamiltonian reads in the case of the negative trion X−

H = 1

2m∗
e

(
p1 + e

c
A1

)2
+ 1

2m∗
e

(
p2 + e

c
A2

)2
+ 1

2m∗
h

(
ph − e

c
Ah

)2
+ Vc (2.1)

where the potential vectorsAi of the electrons and the hole are expressed as a function of
the uniform magnetic fieldH:

A(ri ) = 1
2H × ri . (2.2)

In the following, we study especially the case corresponding to a magnetic field
perpendicular to the plane,H ≡ (0, 0, H), where the potential vector (2.2) is written
as

A(ri ) = H
2

(−yi, xi, 0). (2.3)

The interaction between the three particles is modelled by a Coulombic potential which is
screened by a quite phenomenological dielectric constantε:

Vc = e2

ε

(
1

r12
− 1

r1h

− 1

r2h

)
. (2.4)

We transform the Hamiltonian (2.1), using the in-plane relative coordinatesr(x, y, z),
R(X, Y, Z) and the in-plane coordinates of the centre of massR0(X0, Y0, Z0):

r = r1 − r2 R = r1 + r2

2
− rh R0 = m∗

er1 + m∗
er2 + m∗

hrh

2m∗
e + m∗

h

. (2.5)

Thus, the Hamiltonian can be expressed as the sum of three terms:

H = H0 + H1 + H2 (2.6)

where

H0 = − h̄2

2µ
1r − h̄2

2M
1R − h̄2

2M0
1R0 + Vc (2.7)

H1 = − ieh̄

cm∗
e

[
A(r) · ∇r + 1 − 2σ 2

1 + 2σ
A(R) · ∇R + 2σ(1 + σ)

(1 + 2σ)2
A(R) · ∇R0

+(1 + σ)A(R0) · ∇R + σ

1 + 2σ
A(R0) · ∇R0

]
(2.8)
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H2 = e2

2c2m∗
e

[
1
2A2(r) + 2

1 + 2σ 3

(1 + 2σ)2
A2(R) + (2 + σ)A2(R0)

+4
1 − σ 2

1 + 2σ
A(R) · A(R0)

]
(2.9)

with

µ = m∗
e/2 M = (2m∗

em
∗
h)/(2m∗

e + m∗
h) M0 = 2m∗

e + m∗
h σ = m∗

e/m∗
h.

(2.10)

We can easily verify that the centre of mass momentum operatorP0 = −ih̄∇R0 does
not commute with the Hamiltonian, because of the occurrence of terms involvingA(R0).
Therefore the relative and centre of mass motions can only be separated in the zero-magnetic-
field limit. However, we remark that the operator

π = p1 + p2 + ph − e

c
[A(r1) + A(r2) − Ah(rh)] (2.11)

= −ih̄∇R0 − e

c

[
2

1 + σ

1 + 2σ
A(R) + A(R0)

]
(2.12)

commutes with the Hamiltonian although its componentsπx andπy do not commute with
each other. Generally speaking, there always exists a common basis of eigenfunctions for
πx and H or πy and H . In the following, we choose to determine the common basis for
H andπx , whereπx is written as

πx = −ih̄∂X0 + eH
2c

[
2

1 + σ

1 + 2σ
Y + Y0

]
. (2.13)

As a consequence, it is possible to transform the effective Hamiltonian into an expression
which does not contain the coordinateX0 of the centre of mass. Because the operatorsπx

andH commute, the envelope wave functionφX−(r, R, R0) is the solution of the equation

πxφX−(r, R, R0) = h̄KxφX−(r, R, R0). (2.14)

Its resolution leads to

φX−(r, R, R0) = U8X−(r, R, Y0) (2.15)

where the unitary operatorU is expressed as

U = exp i

[{
K + 2e

ch̄

1 + σ

1 + 2σ
A(R)

}
· R0 − eH

2ch̄
X0Y0

]
. (2.16)

In (2.16) we have introduced the vectorK ≡ (Kx, 0), which must not be confused with the
wave vectorK0 of the centre of mass without magnetic field. The operatorU corresponds
to a canonical transformation which conserves the norm and the scalar product. The energy
of the trion can then be expressed in terms of the transformed HamiltonianH ′ and the
transformed function8X− :

E = 〈8X−(r, R, Y0)|H ′|8X−(r, R, Y0)〉
〈8X−(r, R, Y0)|8X−(r, R, Y0)〉 . (2.17)

The transformed HamiltonianH ′ reads

H ′ = U−1HU = − h̄2

2µ
1r − h̄2

2M
1R − h̄2

2M0
1R0 + h̄2

2M0
K2

x + Vc − ieh̄

cm∗
e

×
[
A(r) · ∇r + 1 − 2σ 2

1 + 2σ
A(R) · ∇R + 4σ(1 + σ)

(1 + 2σ)2
A(R) · ∇R0
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+ σ

1 + 2σ
(A(R0) − B(R0)) · ∇R0

]
− ih̄2

m∗
e

σ

1 + 2σ
K · ∇R0 + eh̄

cm∗
e

×
[

4σ(1 + σ)

(1 + 2σ)2
K · A(R) + σ

1 + 2σ
K · (A(R0) − B(R0))

]
+ e2/c2m∗

e

×
[

1
4A2(r) + 4σ(1 + σ)

(1 + 2σ)2
A(R) · [A(R0) − B(R0)]

+ σ

1 + 2σ
A(R0) · [A(R0) − B(R0)] + λ(σ)A2(R)

]
(2.18)

with

B(R0) = (H/2)(Y0, X0, 0) (2.19)

and

λ(σ) = 1 + 4σ(1 + σ)(2 + σ + σ 2)

(1 + 2σ)3
. (2.20)

Because the function8X− = U−1φX− is independent of the coordinateX0 of the centre of
mass, the acting of the operatorsK · ∇R0 and [A(R0) − B(R0)] · ∇R0 on 8X− does not
make any contribution. Finally, the transformed Hamiltonian can be written as the sum of
five terms:

H ′ = H ′
1 + H ′

2 + H ′
3 + H ′

4 + H ′
5. (2.21)

The first one corresponds to the relative movement without magnetic field:

H ′
1 = Hrel

0 = − h̄2

2µ
1r − h̄2

2M
1R + Vc. (2.22)

The second one is the contribution due to the linear Zeeman effect:

H ′
2 = − ih̄e

cm∗
e

[
A(r) · ∇r + 1 − 2σ 2

1 + 2σ
A(R) · ∇R

]
. (2.23)

The contributionH ′
3 represents the quadratic diamagnetic effect:

H ′
3 = e2

c2m∗
e

[ 1
4A2(r) + λ(σ)A2(R)]. (2.24)

The fourth termH ′
4 describes the action of the magnetic field on the motion of the charged

centre of mass:

H ′
4 = −(h̄2/2M0)∂

2
Y 2

0
+ (M0ω

2
c/2)(Y0 − (h̄c/eH)Kx)

2. (2.25)

H ′
4 is analogous to the Hamiltonian of a harmonic oscillator of massM0 and circular

frequency ωc = eH/M0c which oscillates around the pointY 0
0 = (h̄c/eH)Kx . Its

contribution leads in the two cases to a splitting of the energy levels into Landau levels.
Finally the fifth term

H ′
5 = 2h̄ωc

1 + σ

1 + 2σ

[
−iX∂Y0 + M0ωc

h̄
Y

(
Y0 − h̄c

eHKx

)]
(2.26)

is the coupling between the relative and centre of mass motions.
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3. Binding energy in the low-field approximation

3.1. The adiabatic approximation

In the last section, we have seen that due to the occurrence of the coupling termH ′
5 (2.26),

the relative and centre of mass motions remain coupled. However, they may be separated
when the expression (2.26) forH ′

5

H ′
5 = (H/M0)(a + bH) (3.1)

takes lower values than the other terms of the Hamiltonian (2.21). This situation happens
for low enough magnitudes of the magnetic field and because the dependence ofH ′

5 on the
massM0 is greater than those of the individual particles. In this case, we can still separate
the two motions by using an adiabatic approximation based on the fact that the motion of
the centre of mass is much slower than the relative motion. In these conditions, we can
write the envelope wave function8X−(r, R, Y0) as

8X−(r, R, Y0) ' φrel8CM (3.2)

whereφrel describes the relative motion within the plane and satisfies the following equation:

Hrelφrel = Erelφrel (3.3)

where the relative HamiltonianHrel is given by

Hrel = Hrel
0 + H ′

2 + H ′
3. (3.4)

The wave function8CM describing the oscillatory motion of the centre of mass satisfies
the equation

H ′
48CM = ECM8CM. (3.5)

Its resolution gives rise to Landau levels, leading to a splitting of the energies of the charged
excitons. We will see later that these energies increase considerably with the magnitude of
the magnetic field as well as with the ratio of the effective masses. The eigenvalue and
eigenfunction of the equation (3.5) are written respectively as

ECM = EN
L = h̄ωc(N + 1

2)

80
CM = A exp[−(eH/2h̄c)(Y0 − (h̄c/eH)Kx)

2]
(3.6)

where80
CM represents the eigenfunction of the fundamental level.

Finally, the total energy of the trion X− in a magnetic field is written as

E = 〈φrel|Hrel
0 + H ′

2 + H ′
3 + ECM |φrel〉/〈φrel|φrel〉 (3.7)

and will be determined by a variational calculation.

3.2. Variational calculation of the binding energy

In order to compare our results with those obtained with a zero magnetic field, we will use
the same Hylleraas variational wave function [13] containing 22 terms, but, in our case,
the linear as well as the non-linear variational parameters depend on the magnitude of the
magnetic field. Let us recall that this function depends only on the distancesr1h, r2h and
r12 between the three particles. In these conditions we can write

φrel(r, R) = φ(r1h, r2h, r12) (3.8)
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or using elliptical coordinates (s, t, u) defined by

s = r1h + r2h t = r1h − r2h u = r12

s > 0 − u 6 t 6 +u 0 6 u 6 s

φ(s, u, t) = ψ(ks, ku, kt)

ψ(s, u, t) =
∑
lmn

clmn|lmn〉

where

|lmn〉 = exp(−s/2)slumtn. (3.9)

l, m and n are zero or positive integers; the parametersclmn and the scaling factork are
determined by the variational method and depend on the magnitude of the magnetic field.
The Zeeman termH ′

2, which occurs for a perpendicular magnetic field, does not give any
contribution to the total energy (3.7), because the selected wave function does not depend
on the angles defining the orientation of the trion (eeh) in the plane. In the following, we
use the atomic units for the lengthεh̄2/m∗

ee
2 and the energym∗

ee
4/ε2h̄2 = 2 Ryd. Taking

into account the approximations described above, the average total energy of the trion X−

is written as

E = Erel + ECM (3.10)

with

Erel = 〈φrel|Hrel
0 + H ′

3|φrel〉/〈φrel|φrel〉. (3.11)

ECM is the energy of the centre of mass;Hrel
0 is the Hamiltonian of the relative motion

without a magnetic field. The diamagnetic termH ′
3 is written as

H ′
3 = Hdia = (γ 2/4)[ 1

4ρ2
r + λ(σ)ρ2

R] (3.12)

where

ρr = x2 + y2 ρR = X2 + Y 2 (3.13)

with

γ = h̄ωc/2 Ryd ωe = eH/(m∗
ec). (3.14)

From the relations (3.13), it can be easily verified that

Hdia(s, u, t) = (γ 2/16)[u2 + λ(σ){s2 + t2 − u2}] = (1/k2)Hdia(ks, ku, kt). (3.15)

The average value of the relative energy (3.11) can be expressed as a function of the matrix
elements ofH ′

3 = Hdia, Hrel
0 and the norm in a basis of vectors|lmn〉 by

Erel = (k2M − kL + P/k2)/N (3.16)

whereM, L, P andN are quadratic forms associated with the kinetic energy, the potential
energy, the diamagnetic energy and the normation factor which no longer depend on the
scaling factork. They are given by

M = c†Tc L = −c†Vc P = c†Dc N = c†Sc. (3.17)

c† denotes the transposed column matrix of theclmn coefficients. The matricesT, V and
D correspond to the representation of the kinetic energy, potential energy and diamagnetic
energy operators defined in a basis of vectors|lmn〉 and S denotes the normation matrix.
The different matrix elements are given in the appendix. Within the variational principle,
the coefficientsk andclmn must satisfy the conditions

∂Erel/∂k = 0 ∂Erel/∂clmn = 0. (3.18)
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The first equation leads to

k4 − k3L/2M − P/M = 0. (3.19)

Therefore

Erel = −k2M/N + 3P/k2N. (3.20)

The second equation leads to a system of linear equations involving theclmn coefficients:

(k2T + kV + D/k2 − ErelS)c = 0. (3.21)

Figure 1. The variation of the relative energy of the fundamental state of the negative trion X−
as a function of the effective magnetic fieldγ in the 2D and 3D cases for two values of the
electron to hole effective mass ratioσ .

4. Results and discussion

The resolution of the system given by (3.21) allows us to determine the energiesErel as
well as the variational parametersclmn andk. Our 22-term wave function, (3.9), is defined
by the conditionl+m+n 6 4. We start our calculations using the values of the scale factor
k obtained without magnetic field [8]. For fixed values ofk, γ andσ , we diagonalize the
system given by (3.21) and use theclmn coefficients to determine the quadratic formsL,
M, N and P corresponding to the fundamental eigenvalue of (3.21). Then we determine
numerically the real roots of the fourth-order equation fork, (3.19). These roots are then
used to solve (3.20). The value ofk which gives rise to the lowest relative energyErel is
used as initial value for a next iteration and so on until the desired accuracy for the energy
is reached. In figure 1, we show the variations withγ of the fundamental relative energy
for some values of the effective mass ratioσ . A maximum number of 50 iterations has been
necessary to obtain an accuracy of five significant digits. Now we can compare the present
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Figure 2. Variations of the difference between the relative energyErel and the Landau
fundamental energy of the three non-interacting particles as a function of the effective magnetic
field γ .

2D values to our previously obtained 3D values [8] using the same 22-term wave function.
We remark that the values of the 2D relative energies are lower than the 3D energies because
of the dimensional confinement. In all cases the relative energy increases with the magnetic
field:

Erel(2D) < Erel(3D). (4.1)

In order to point out the influence of the dimensional and magnetic confinements on
the Coulombic interaction energy, it is necessary to subtract the energy of the three non-
interacting particles under the action of a magnetic field from the relative energy. For this
purpose, we have represented in figure 2 the variations withγ of the difference between
the relative energyErel and the Landau fundamental energy of the three non-interacting
particles under the action of the magnetic field. We note that the dimensional and magnetic
confinements increase the effect of the Coulombic interaction. For a fixed value ofγ ,
it appears thatE2D < E3D. On the other hand, in all cases, the Coulombic interaction
increases with the magnetic field. We remark also that our results can be useful in atomic
physics. Indeed, if we consider the limit case in whichσ tends to zero, the trion X−

becomes analogous to a hydrogen ion H−, while the trion X+
2 reduces to an ionized hydrogen

molecule H+
2 . Therefore the behaviour of the H− ion under the action of a magnetic field

may be deduced from figure 1. In order to study the influence of the magnetic field and of
the confinement on the motion of the centre of mass, we have represented in figure 3 the
variations withγ of the total energy (3.11) of the trion X−, for σ = 0.1. This figure shows
how the zero-field energy levels split into Landau levels under the influence of a magnetic
field.

The present study has been limited to the case of a low magnetic field. However, some
interesting behaviours may be expected in the high-field limit. Indeed, the similar problem
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Figure 3. Variations of the total energy of the trion X− with the effective magnetic field, for
σ = 0.1 in the 2D and 3D cases, showing the splitting into Landau levels.

of three electrons in two dimensions has been discussed [14] in a strong magnetic field.
In this case, it has been found that the interelectronic spacing has characteristic values
not depending on the form of the interaction, which change discontinuously as pressure
is applied, and that the system has characteristic excitation energies proportional to 1/H.
Finally, we remark that the present 2D results together with those previously obtained [11]
in the 3D case may be used in order to estimate what happens in SC quantum wells. Indeed,
the 2D limit corresponds to a quantum well with zero well width and infinite conduction
and valence band offsets. Therefore, we expect that in the case of a finite well width and
finite band offsets the Coulomb correlation energies lie between the 2D and 3D limits.
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Appendix. Expression of the matrix elements

All the matrix elementsT j

i , V
j

i , D
j

i and S
j

i with i ≡ (lmn) and j ≡ (l′m′n′), can be
expressed in terms of the integralsJ l′m′n′

lmn , defined by

J
j

i (λ, µ, ν) = 2π

∫ ∞

0
exp(−ks)sl+l′+λ ds

∫ s

0

um+m′+µ

√
s2 − u2

du

∫ u

0

tn+n′+ν

√
u2 − t2

dt (A.1)

= 2π(l + l′ + λ + m + m′ + µ + n + n′ + ν)!

kl+l′+λ+m+m′+µ+n+n′+ν+1
Im+m′+µ+n+n′+νIn+n′+ν (A.2)
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where

I2n = π(2n!)

(n!)222n+1
I2n+1 = (n!)222n

(2n + 1)!
. (A.3)

We obtain

T
j

i = k2

4
[J j

i (0, 1, 2) − J
j

i (2, 1, 0)] + k(l + m + 1)J
j

i (1, 1, 0) − klJ
j

i (−1, 1, 2)

+l(l − 1)J
j

i (−2, 1, 2) + (n − 1)(n + l + 2m + 1)J
j

i (0, 1, 0)

−n(n − 1)J
j

i (2, 1, −2) + m(m + 2l)J
j

i (0, −1, 2)

−m(m + 2n)J
j

i (2, −1, 0) − mkJ
j

i (1, −1, 2)

+σ
k2

2
[J j

i (0, 3, 0) − (2, 1, 0)] + σk(2l + 1)J
j

i (1, 1, 0)

−2σklJ
j

i (−1, 3, 0) + 2σ l(l − 1)J
j

i (−2, 3, 0) + 2σ(n2 − l2)J
j

i (0, 1, 0)

−2σn(n − 1)J
j

i (0, 3, −2) (A.4)

V
j

i = J
j

i (2, 0, 0)J
j

i (0, 0, 2) − 4J
j

i (1, 1, 0) (A.5)

D
j

i = γ 2

16
[J j

i (2, 3, 0) − J
j

i (0, 3, 2) + λ(σ){J j

i (4, 1, 0) − J
j

i (0, 1, 4)

+J
j

i (0, 3, 2) − J
j

i (2, 3, 0)}] (A.6)

S
j

i = J
j

i (2, 1, 0) − J
j

i (0, 1, 2). (A.7)
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